

BUSINESS DATA COMMUNICATIONS & NETWORKING

Chapter 2
Application Layer

FitzGerald • Dennis • Durcikova

Outline

- Application Architectures
- The Web
- Email
- Other Application-Layer Protocols
- Implications for Management

Application Layer

- Layer 5 in the Internet model
- The software that enables users to interact with the network and accomplish tasks

Internet Model

Application

Transport

Network

Data Link

Physical

Application Architecture

- The way the functions of the application layer are spread out across the client and server
- Four components of applications:
 - 1. Presentation logic
 - 2. Application logic
 - 3. Data access logic
 - 4. Data Storage

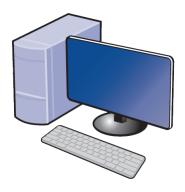
Host-Based Architecture

- Server contains all components ("server-based")
- Common in the 1960s with mainframes and terminals

CLIENT

SERVER

Presentation Logic Application Logic Data Access Logic Data Storage


Host-Based Architecture

- Advantages
 - Very simple
 - Single point of control
- Disadvantages
 - Host (server) can become a bottleneck
 - Upgrades typically expensive

Client-Based Architecture

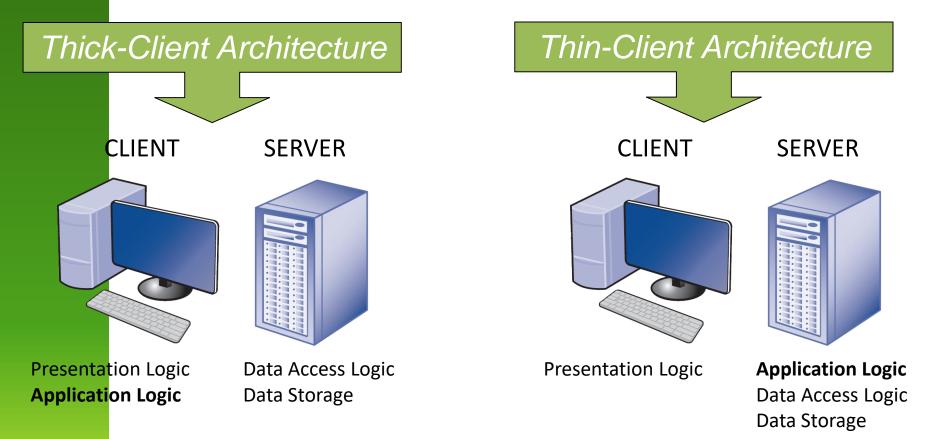
- Client contains presentation, application, and data access logic
- Most common in the 1980s

CLIENT

Presentation Logic Application Logic Data Access Logic

SERVER

Data Storage

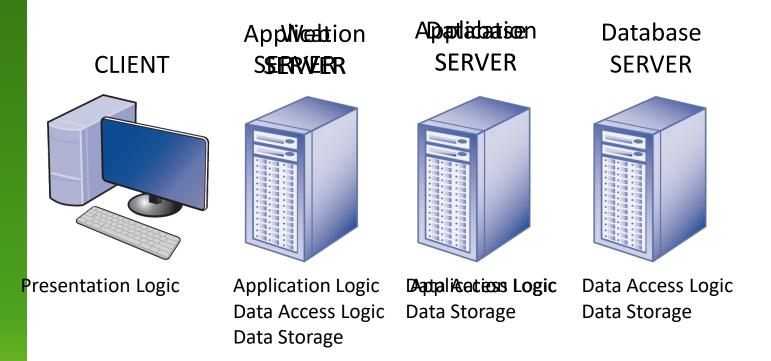

Client-Based Architecture

- Advantages
 - Hardware and applications less expensive
 - Simple architecture
- Disadvantages
 - Data must travel back and forth between server and client

Most common architecture today

OR

• Thin clients are easier to manage, thick clients have more functionality



- Advantages
 - More efficient because of distributed processing
 - Allows hardware/software from different vendors to be used together
 - Less bandwidth required
- Disadvantages
 - May be challenges in configuring hardware/software from different vendors to work together
 - In many cases, middleware is required

- **Middleware** is software acts as an intermediary by "sitting between" client and server applications
- Provides a standard way of translating between software from different vendors
- Manages message transfers
- Insulates network changes from the clients (e.g., adding a new server)

• Example of three-tier architecture

Tiered Client-Server Architecture

- Advantages
 - Load balancing
 - More scalable
- Disadvantages
 - Each tier increases network load
 - More complex and difficult to develop applications

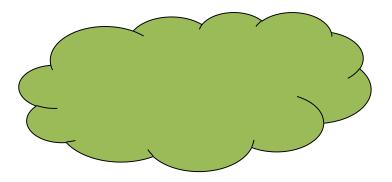
Peer-to-Peer Architecture

- An older architecture that became popular again with Napster, BitTorrent, etc.
- All devices can act as client and server

CLIENT/SERVER

Presentation Logic Application Logic Data Access Logic Data Storage

CLIENT/SERVER


Presentation Logic Application Logic Data Access Logic Data Storage

Peer-to-Peer Architecture

- Advantages
 - Resilient to failure
 - Data can be stored anywhere on network
 - Distributes bandwidth requirements
- Disadvantages
 - Finding the stored data
 - Security

Cloud Computing

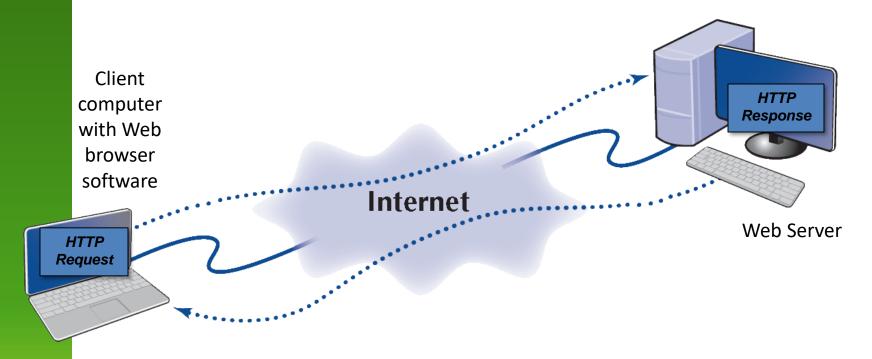
- **Cloud Computing** is the general term for enabling access to computing services over the network (most commonly the Internet)
- Models of cloud computing define who manages each application function and associated hardware/software

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

Cloud Computing

- Cloud Computing Models
 - Software as a Service (SaaS)
 - All application components and associated hardware/software outsourced
 - Based on multitenancy
 - e.g. Salesforce.com
 - Platform as a Service (PaaS)
 - Application logic and data are managed internally
 - e.g., Microsoft Azure
 - Infrastructure as a Service (IaaS)
 - All hardware is outsourced

Cloud Computing

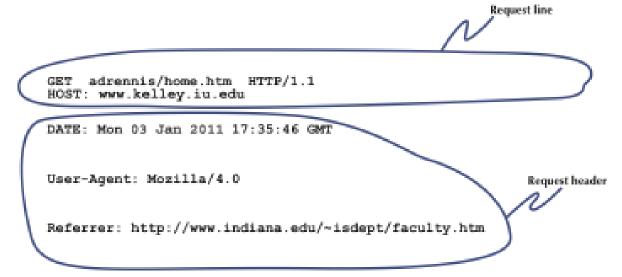

	Traditional Thin-Client Client-Server		Infrastructure as a Service (IaaS)		Platform as a Service (Paas)		Software as a Service (SaaS)	
	Internal	Outsourced	Internal	Outsourced	Internal	Outsourced	Internal	Outsourced
Application Logic	X		X		X			X
Data Storage	X		X		X			X
Data Access Logic	X		X			X		X
Operating System	X		X			X		X
Virtualization Software	X		X			X		X
Server Hardware	X			X		X		X
Storage Hardware	X			X		X		X
Network Hardware	X			X		X		X

Criteria for Choosing Architecture

- Infrastructure
 - Cost of servers, clients, and circuits
 - Reliability
- Development Costs
 - Software; cheaper on host-based architectures
- Scalability
 - Ability to increase (or decrease) in computing capacity as network demand changes
 - Easier in client-server architectures

The Web

- Hypertext Transfer Protocol (HTTP)
- HTTP Request and Response

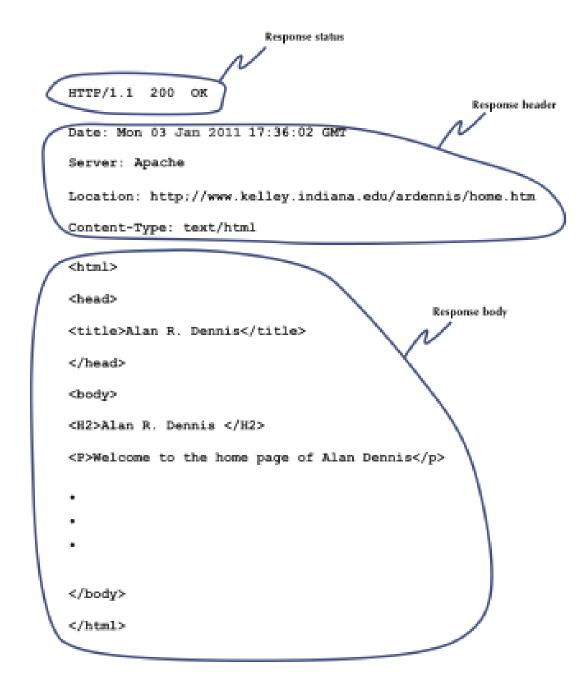


The Web

• HTTP Request

FIGURE 2-11

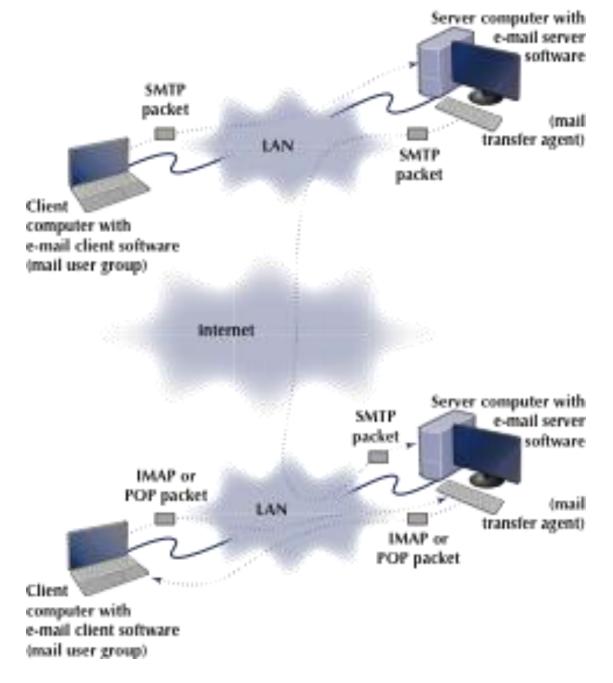
An example of a request from a Web browser to a Web server using the HTTP (Hypertext Transfer Protocol) standard



The Web

HTTP Response

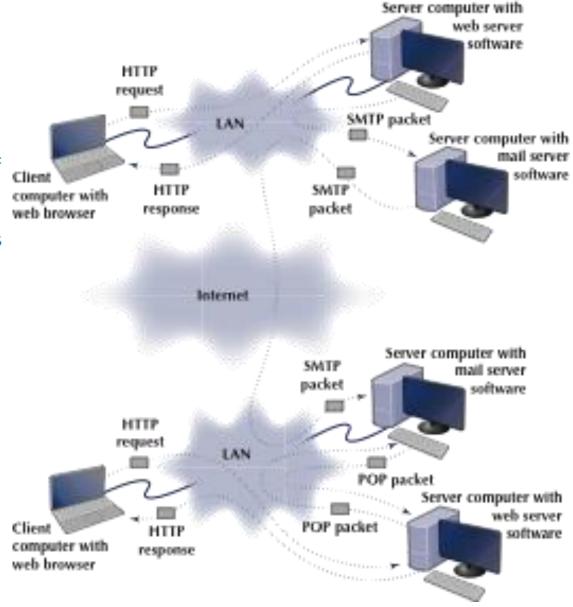
FIGURE 2-12


An example of a response from a Web server to a Web browser using the HTTP standard

- Mail Transfer Agent (MTA)
 - Formal name for mail server software
 - e.g., Sendmail, Postfix,
- Mail User Agent (MUA)
 - Formal name for mail client software
 - e.g., Outlook, Apple Mail, Thunderbird
- Simple Mail Transfer Protocol (SMTP)
 - Protocol used to send a message to a MTA
 - Originally only handled text files
- Internet Message Access Protocol (IMAP) or Post Office Protocol (POP)
 - Protocols used by a MUA to retrieve messages from an MTA
- American Standard Code for Information Interchange (ASCII)
 - A standard for encoding text characters (a-z, A-Z, 0-9, a few symbols)

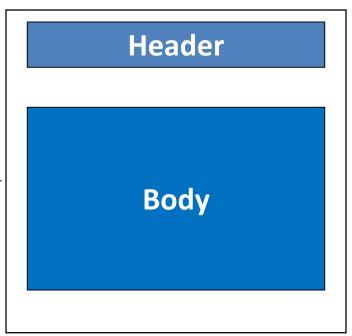
FIGURE 2-13

How SMTP (Simple Mail Transfer Protocol) email works. IMAP = Internet Message Access Protocol; LAN = local area network



Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

- How a message is sent (2-tier, thick client)
- Sending Client → Sender's Mail Server (SMTP)
- Sender's Mail Server → Receiver's Mail Server (SMTP)
- Message waits on Receiver's Mail Server in "mailbox"
- Receiving Client → Receiver's Mail Server (IMAP or POP)
- Receiver's Mail Server → Receiving Client (IMAP or POP)


FIGURE 2-14

Inside the Web. HTTP =
Hypertext Transfer
Protocol; IMAP =
Internet Message Access
Protocol; LAN = local
area network; SMTP =
Simple Mail Transfer
Protocol

- How a message is sent via webmail (3-tier, thin client)
 - 1. Sending Client \rightarrow Sender's Web Server (**HTTP**)
 - 2. Sender's Web Server \rightarrow Sender's Mail Server (**SMTP**)
 - 3. Sender's Mail Server \rightarrow Receiver's Mail Server (**SMTP**)
 - 4. Mail waits on Receiver's Mail Server in "mailbox"
 - 5. Receiving Client \rightarrow Receiver's Web Server (**HTTP**)
 - Receiver's Web Server → Receiver's Mail Server (IMAP or POP)
 - 7. Receiver's Mail Server → Receiver's Web Server (IMAP or POP)
 - 8. Receiver's Web Server \rightarrow Receiving Client (**HTTP**)

- SMTP Message Format
 - RFC 822: Standard for text message format
- Header lines
 - Contain information about the message such as To, From, and Subject
- Body section
 - Contains the "content of the message
 - Begins with the "DATA" keyword
 - Only uses ASCII characters

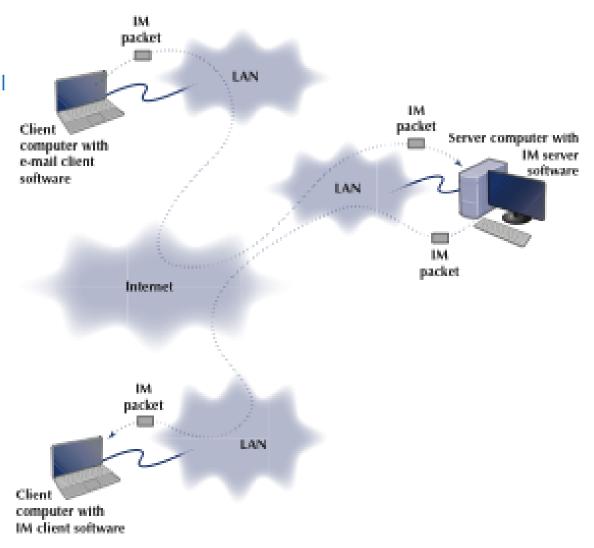
- Inside an SMTP packet
 - Header: source, destination, date, subject, etc.
 - **Body:** keyword "DATA", then email message

FIGURE 2-15

An example of an email message using the SMTP (Simple Mail Transfer Protocol) standard

FROM: "Alan Dennis" <ardennis@indiana.edu>
TO: "Pat Someone" <someone@somewhere.com>
DATE: Mon 03 Jan 2011 19:03:03 GMT
SUBJECT: Sample Note
Message-ID: <4.1.20000623164823.009f5e80@IMAP.IU.EDU>
DATA
Body
This is an example of an e-mail message.

- SMTP is a simple protocol to send plain text
- Not designed to send images or attachments
- Multipurpose Internet Mail Extension (MIME)
 - A standard to extend support for attachments and non-ASCII characters in email
 - Used by sender to convert (encode) any non-ASCII content into ASCII
 - Receivers then convert (decode) the ASCII back to its original format


Other Application-Layer Protocols

- File Transfer Protocol (FTP) for moving files between clients and servers
- Telnet, Secure Shell (SSH) for executing commands on a remote system
- Internet Relay Chat (IRC), Extensible Messaging and Presence Protocol (XMPP) for real-time text chat (instant messaging)
- **Domain Name System (DNS)** for mapping domain names to IP addresses

Instant Messaging

FIGURE 2-16

How instant messaging (IM) works. LAN = local area network

Video Conferencing

FIGURE 2-17

A Cisco telepresence system

Source: Courtesy Cisco Systems, Inc. Unauthorized use not permitted

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

Implications for Management

- Primary purpose of networks is to provide environment for applications
- The number and types of applications on the network is dramatically increasing