

BUSINESS DATA COMMUNICATIONS & NETWORKING

Chapter 5 Network and Transport Layers

тистисти ана ттанърот грауето

FitzGerald • Dennis • Durcikova

Prepared by Taylor M. Wells: College of Business Administration, California State University, Sacramento

Outline

- Transport Layer Protocols
- Network Layer Protocols
- Transport Layer Functions
 - Linking to the application layer
 - Segmenting
 - Session Management
- Network Layer Functions
 - Addressing
 - Routing
- TCP/IP Examples
- Implications for Management

Network and Transport Layers

- Transport Layer
 - Layer 4 in the Internet model
 - Links application and network layers
 - Responsible for segmentation and reassembly
 - Session management
 - Responsible for end-to-end delivery of messages
- Network Layer
 - Layer 3 in the Internet model
 - Responsible for addressing and routing of messages

Internet Model

Protocols

- TCP/IP
 - Originally developed as a single internetworking protocol by Vint Cerf and Bob Kahn in 1974
 - Later divided into the TCP and IP protocols
 - Most common protocols of the Internet and in LANs, WANs, and backbone networks

Transport Layer Protocols

- Transmission Control Protocol (TCP)
 - Most common transport layer protocol
 - PDU called a segment
 - Used for reliable transmission of data
 - 160 192 bits (20 24 bytes) of overhead
 - Options field is not required

Source Port (16 bits)	Destination Port (16 bits)	Sequence Number (32 bits)	ACK number (32 bits)	Header Length (4 bits)	Unused (6 bits)	Flags (6 bits)	Flow Control (16 bits)	CRC-16 (16 bits)	Urgent Pointer (16 bits)	Options (32 bits)	User Data (varies)
-----------------------------	----------------------------------	---------------------------------	----------------------------	------------------------------	--------------------	-------------------	------------------------------	---------------------	--------------------------------	----------------------	-----------------------

Transport Layer Protocols

- User Datagram Protocol (UDP)
 - Operates at the transport layer
 - PDU called a segment
 - Used in time-sensitive situations, for control messages, or when reliability is handled by the application layer
 - 32-64 bits (4-8 bytes) of overhead
 - Source port is optional in IPv4 and IPv6, Checksum is optional in IPv4

Source Destination Port Port (16 bits) (16 bits)	Length (16 bits)	Checksum (16 bits)	User Data (varies)
--	---------------------	-----------------------	-----------------------

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

Network Layer Protocols

- Internet Protocol (IP)
 - IP version 4 (IPv4)
 - Most common version of IP used
 - 32-bit addresses (2³² or ~4.29 billion possible)
 - Exhaustion of address space
 - IP version 6 (IPv6)
 - 128-bit addresses (2^{128} or $\sim 3.4 \times 10^{38}$ possible)
 - Slowly being adopted due to IPv4 exhaustion

Network Protocols

Optional Headers

- IPv6 Packet
 - Fixed Header
 - 320 bits (40 bytes) of overhead

Version	Traffic	Flow	Payload	Next	Hop	Source	Destination
number	Class /	Label	length	Header	Limit	Address	Address
(4 bits)	Priority (8 bits)	(20 bits)	(16 bits)	(8 bits)	(8 bits)	(128 bits)	(128 bits)

Optional Headers

- Hop-by hop options
- Destination options (with routing options)
- Routing
- Fragment
- Authentication
- Encapsulation Security Payload
- Destination options
- Mobility

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

User Data (varies)

- 1. Linking to the application layer
 - TCP/UDP may serve multiple application layer protocols
 - **Ports** used to identify application (2-byte numbers)
 - Many source/destination ports follow standards
 - Common port standards
 - HTTP: TCP port 80
 - HTTPS: TCP port 443
 - FTP: TCP ports 20 and 21
 - SMTP: TCP port 25
 - IMAP: TCP port 143
 - POP3: TCP port 110 (more commonly TCP port 995 secure version)
 - DNS: TCP or UDP port 53 (most commonly UDP)

FIGURE 5-5 Linking to application layer services

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

- 2. Segmenting
 - Breaking up large files into smaller segments (and putting them back together)
 - Segments may be passed individually to application layer or after reassembly
 - How large are the segments?
 - Size depends on the network and data link layer protocols
 - Maximum Segment Size (MSS) is negotiated during TCP handshake
 - e.g., if the maximum size of the data in an Ethernet frame is 1,500 bytes and TCP and IP use 20 byte headers, the maximum segment size is 1460 bytes

- 3. Session management
 - A session can be thought of as a conversation between two computers or creating a virtual circuit
 - Using a session to send data is also called connectionoriented messaging (TCP)
 - Sending messages without establishing a session is **connectionless** messaging (UDP)
 - TCP connections are opened using a three-way handshake
 - SYN
 - SYN-ACK
 - ACK
 - Sessions provide reliable end-to-end connections

- Addressing
 - Used to direct messages from source to destination
 - Addresses are assigned in various ways (e.g., by system administrators, ICANN, hardware vendors, etc.)
 - Addresses exist at different layers
 - Addresses may be translated (resolved) from one layer to another (e.g., DNS, ARP)

Address Type	Example	Example Address
Application layer	Uniform Resource Locator (URL)	www.indiana.edu
Network layer	IP address	129.79.78.193 (4 bytes)
Data link layer	MAC address	1C-6F-65-F8-33-8A (6 bytes)

- Addressing
 - IPv4 addresses are 32 bits
 - Most common way to write is using dot-decimal notation
 - Easier for people to read and remember
 - Breaks the address into four bytes and writes each byte in decimal notation instead of binary
 - Example: 129.79.78.193

1000001 01001111 01001110 1100001

- Addressing
 - A portion of an IP address represents the network and the rest identifies the host
 - Classful addressing
 - Uses the first bits to determine number of hosts
 - Discontinued, but nomenclature still used
 - Classless Inter-Domain Routing (CIDR)
 - Uses subnet masks to more flexibly divide address space into subnets
 - IP address: **129.79.78.193**
 - Subnet Mask: 255.255.255.0

- Dynamic addressing
 - Configuring each device manually is time consuming
 - Assigning addresses permanently can be inefficient when devices are not connected to network
 - A server can supply IP addresses automatically
 - Dynamic Host Configuration Protocol (**DHCP**)
 - Most common protocol for dynamic addressing
 - Device sends out broadcast message
 - DHCP responds with IP settings
 - Addresses are "leased" for a length of time

- Address resolution
 - Host (server) name resolution
 - Translate host name to IP address
 - e.g., www.indiana.edu \rightarrow 129.79.78.193
 - Domain Name Service (DNS)
 - MAC address resolution
 - Identify MAC address of the next device in the circuit
 - Address Resolution Protocol (**ARP**)

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

- Routing
 - Process of identifying what path to have a packet take through a network from sender to receiver
 - Routing Tables

e		
 Used to make routing decisions 	Dest.	Next
 Shows which path to send packets on to reach a given destination 	В	В
 Kept by computers making routing decisions 	С	В
Routers	D	D
• Special purpose devices used to handle routing decisions on the Internet	E	D
• Maintain their own routing tables	F	D
	G	В

What are the possible paths from A to G?

Centralized Routing

- Routing decisions made by one computer
- Not common anymore

Decentralized Routing

- Decisions made by each node independently of one another
- Information needs to be exchanged to prepare routing tables
- Used by the Internet

• Static

- Fixed routing tables
- Manually configured by network managers
- Local adjustments when computers added or removed

• Dynamic

- Routing tables updated periodically
- Routers exchange information using protocols to update tables

- Dynamic routing algorithms
 - Distance vector: based on the number of "hops" between two devices
 - Link state: based on the number of hops, circuit speed, and traffic congestion
 - Provides more reliable, up to date paths to destinations

• Routing Information Protocol (RIP)

- Dynamic distance vector protocol used for interior routing
- Operation
 - Network manager builds the routing table
 - Routing tables broadcast periodically (e.g., every minute or so)
 - When new computers are added, router counts "hops" and selects the shortest route
- Useful in smaller, less complex networks

• Open Shortest Path First (OSPF)

- Dynamic link state protocol used for interior routing
- Most widely used interior routing protocol on large enterprise networks
- More reliable paths
- Less burdensome to the network because only updates sent

- Enhanced Interior Gateway Routing Protocol (EIGRP)
 - A dynamic link state protocol (developed by Cisco)
 - Records transmission capacity, delay time, reliability and load for all paths
 - Keeps the routing tables for its neighbors and uses this information in its routing decisions as well

- If each network uses a different protocol internally, how are they able to communicate?
- Border Gateway Protocol (BGP)
 - Dynamic distance vector protocol used for exterior routing
 - Far more complex than interior routing protocols
 - Provide routing info only on selected routes (e.g., preferred or best route)

FIGURE 5-13

Routing on the Internet with Border Gateway Protocol (BGP), Open Shortest Path First (OSPF), and Routing Information Protocol (RIP)

Multicasting

- Unicast one computer to another computer
- **Broadcast** one computer to all computers in the network
- **Multicast** one computer to a group of computers (e.g., videoconference)
 - Same data needs to reach multiple receivers and avoid transmitting it once for each receiver
 - Particularly useful if access link has bandwidth limitations
 - Many implementations at different layers
 - In IP multicast, hosts dynamically join and leave multicast groups using Internet Group Management Protocol (IGMP)

TCP/IP Example

- Required network addressing information:
 - 1. Device's own IP address
 - 2. Subnet mask
 - 3. IP address of default gateway (most commonly the router)
 - 4. IP address of at least one DNS server
- Obtained from a configuration file or DHCP

Known Addresses, Same Subnet

FIGURE 5-15 Example Transmission Control Protocol/Internet Protocol (TCP/IP) network

• Suppose we have an HTTP request from Client in building A to Server in building B.

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

TCP/IP Examples

- 1. A Client (128.192.98.130) requests a Web page from a server (www1.anyorg.com)
 - Client knows the server's IP
- 2. A Client (128.192.98.130) requests a Web page from a server (www2.anyorg.com) on a different subnet
 - Client knows the server's IP
- 3. A Client (128.192.98.130) requests a Web page from a server (www1.anyorg.com)
 - Client does not know server's IP

TCP/IP and Layers

- Host Computers
 - Packets move through all layers
- Gateways, Routers
 - Packet moves from Physical layer to Data Link Layer through the network Layer
- At each stop along the way
 - Ethernet packets is removed and a new one is created for the next node
 - IP and above packets never change in transit (created by the original sender and destroyed by the final receiver)

FIGURE 5-18 How messages move through the network layers. *Note:* The addresses in this example are destination addresses

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

Implications for Management

- Organizations standardizing on TCP/IP
 - Decreases costs of equipment and training
 - Network providers are also moving towards standardization
- Slow transition to IPv6