

BUSINESS DATA COMMUNICATIONS & NETWORKING

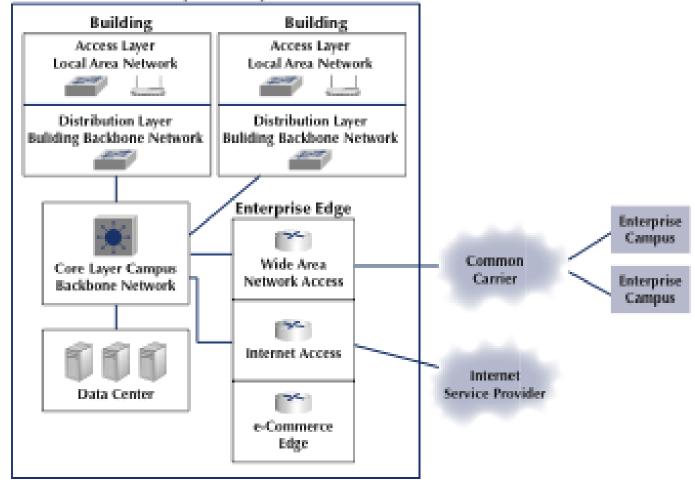
Chapter 6
Network Design

FitzGerald • Dennis • Durcikova

Outline

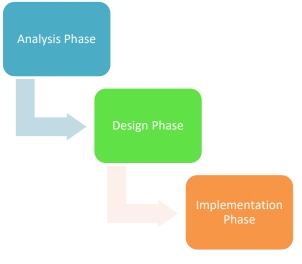
- Network architecture components
- Traditional network design
- Building-block network design
 - Needs analysis
 - Technology design
 - Cost assessment
- Implications for management

Network Architecture Components


- Local area network (LAN) Ch. 7
- Building backbone network (or distribution layer) Ch. 8
- Campus backbone (or core layer) Ch. 8
- Data center Ch. 7
- Enterprise edge
 - Wide area network (WAN) Ch. 9
 - Internet access Ch. 10
 - e-commerce edge Ch. 7 & 11

Network Architecture Components

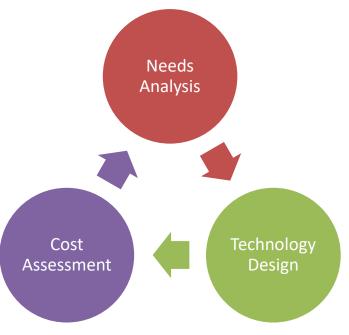
FIGURE 6-1


Network architecture components

Enterprise Campus

Traditional Network Design

- A structured systems analysis and design process
- Network analysis phase includes:
 - Meeting with users to determine the needs and applications
 - Estimating data traffic on each part of the network
- During the network **design phase**, the logical and physical networks are designed and circuits and hardware selected
- **Implementation phase** is the building and implementing of the network



Traditional Network Design

- Pros
 - Useful for static and slowly evolving networks
- Cons
 - Costly
 - Time consuming
 - This approach may not be adequate today due to:
 - Rapid changes in technology
 - Escalating network traffic demands
 - Decrease in hardware costs and increase in staff costs.

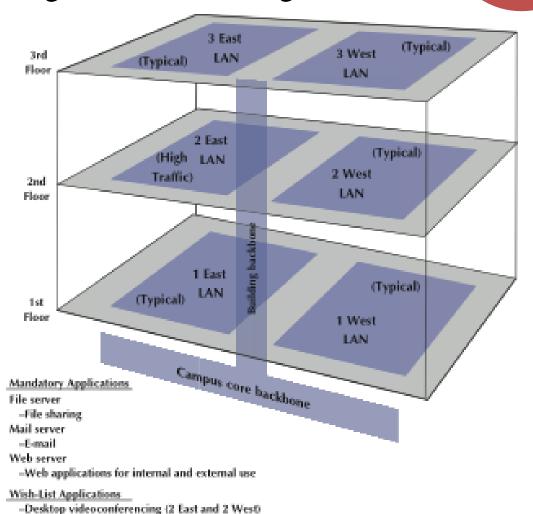
Building Block Network Design

- Uses a few standard components to simplify design and reduce costs
- Iterative design phases
 - Needs analysis
 - Understand current and future network needs (users and applications)
 - Technology design
 - Examine available technologies to determine which meet or exceed needs
 - If needs are difficult to estimate, build higher capacity
 - Cost assessment
 - Evaluate financial costs of technology

- Why is the network needed?
 - Performance issues may exist
 - The organization may be standardizing
 - Hardware may need replacement
- What users and applications must be supported?
- Goals differ depending on the network component
 - LAN and BN typically are built with organizational ownership and are often built with excess capacity
 - WANs rely more on leased equipment and circuits are typically designed at or near capacity with organizations leasing additional circuits as required

- Baselines
 - Create metrics of current operations to compare design requirements against
 - Baselines may include
 - Sequence of operations
 - Processing times
 - Work volumes
 - Existing costs
 - Existing user/management needs

- 1. Break down the network into architectural components
 - Evaluate all seven components
 - Often easiest to start with WANs
 - Geographic scope of network
- 2. Review the existing and expected applications that will use the network
 - Identify hardware and software requirements for these applications
 - Identify protocols used by applications


- 3. Identify and assess network users
 - Some users may have very different needs
 - How many of each type of user?
- 4. Categorize network requirements
 - Mandatory
 - Desirable
 - Wish-list

Needs Analysis

Deliverable: Logical network design

FIGURE 6-4

Sample needs assessment Logical network design for a single building. LAN = Local area network

- Development of a physical network design (or set of possible designs)
- Design includes clients, servers, circuits, and networking devices (routers, gateways, access points, switches, etc.)
- What new hardware needs to be purchased?
- Can the existing equipment be upgraded?

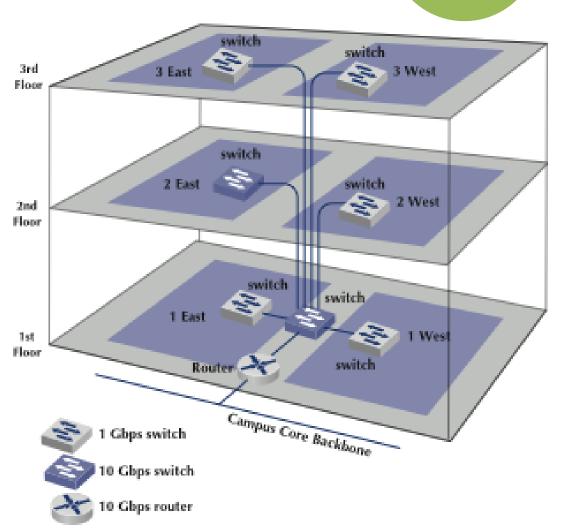
- 1. Designing clients and servers
 - Specify of the devices needed in standard units
 - "Typical" users are allocated base-level clients
 - "Advanced" users are allocated advanced clients
 - Servers are similarly allocated based on application needs
 - Definitions of "typical" and "advanced" change as hardware costs fall, and capabilities increase

- 2. Designing circuits
 - Capacity planning is the estimation of circuit size and type required for each network architecture component
 - Circuit loading is an assessment of the amount of data transferred across a circuit (currently or in the future)

- Estimating circuit traffic
 - Average traffic vs. peak traffic
 - Designing for peak traffic is ideal
- Estimating message volume
 - Count messages sent in the current network and multiply by the expected growth rate
- Precision may not be the major concern
 - Obtaining precise estimates is difficult and expensive
 - Standard circuit speeds "stair step"
 - Traffic typically increases more than anticipated

- Should network designers plan for excess capacity?
 - Upgrading costs 50-80% more than designing higher capacity time
 - Very few complaints about overcapacity
- Most organizations intentionally overbuild
- The **turnpike effect** occurs when traffic increases faster than forecasts
 - When networks are efficient and fast, users will use them more frequently
 - Most networks designed with excess capacity end up using overcapacity within 3 years

- 3. Network Design Tools
 - Modeling
 - Users create diagrams of existing or proposed networks
 - Discovery
 - Some tools can automatically create network diagrams by examining existing network
 - Simulation
 - A mathematical technique used to model the behavior of a network under real conditions
 - Simulates applications and users generating traffic and responding to messages
 - May highlight potential problems



- Deliverable: One or more physical network designs
 - Multiple designs may be created to highlight tradeoffs between performance and cost
 - Design of circuits and networking devices
 - Designs for new/upgraded clients and servers

Technology Design

FIGURE 6-5

Physical network design for a single building

- Financial analysis of the various technology design alternatives
- Complex process that requires analysis of many factors:
 - Circuit costs (cabling and installation)
 - Internetworking devices (switches and routers)
 - Hardware costs (clients, servers, power supplies)
 - Software costs (operating systems, application software and middleware)
 - Network management and maintenance costs
 - Operations costs to run the network
 - WAN and Internet circuits

- Request for proposal (RFP)
 - Detailed specification of equipment, software, and services desired from vendors
 - Typically used in large network purchases
 - May include timeline and evaluation criteria for proposals
- Allows the organization to evaluate offerings from different vendors
- Multi-vendor proposals
 - May provide better performance
 - May be less expensive
 - May be more difficult to manage

- Selling the proposal to management
 - Understand that networks, data centers, and most information technology is viewed as a cost center
 - Make a business case by focusing on organizational needs and strategy
 - The importance of network speed, reliability, and security are easy for non-technical users to understand
 - Avoid focusing on technical details and jargon

- Deliverables
 - Finalized RFP that is sent to vendors
 - Revised technology design with detailed specifications including exact products and costs
 - Business case for the network design

Implications for Management

- Network design increasingly relies on standardized technologies and a building-block design
- The cost of hardware, software, and circuits is less expensive in the long-run than human resources to manage network
 - This may make more expensive hardware that is easier to manage a better long-term financial decision
- Network usage continues to grow and designing networks with extra capacity is less expensive than upgrading later