

BUSINESS DATA COMMUNICATIONS & NETWORKING

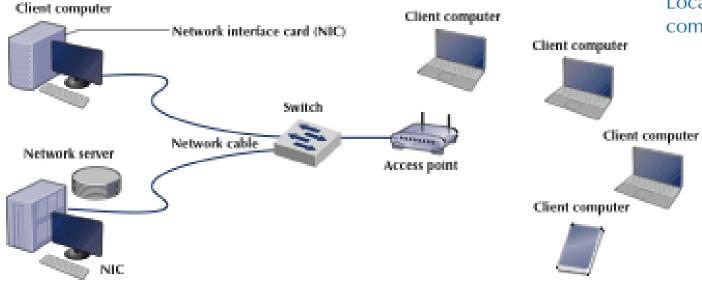
Chapter 7 Wired and Wireless Local Area Networks

FitzGerald • Dennis • Durcikova

Prepared by Taylor M. Wells: College of Business Administration, California State University, Sacramento

Outline

- Why use a LAN?
- LAN components
- Wired Ethernet
- Wireless Ethernet
- LAN design
- Improving LAN performance
- Implications for Management


Why use a LAN?

- Information sharing
 - Improved decision making
 - May reduce data duplication and inconsistency
- Resource sharing
 - Devices such as printers can be shared by many clients
- Software sharing
 - Some software can be purchased on a per-seat basis and resides on server
 - Reduces costs, simplifies maintenance and upgrades
- Device Management
 - Software updates and configuration are easier

- 1. Clients
- 2. Servers
- 3. Network interface cards (NICs)

- 4. Network cables
- 5. Hubs / switches / access points
- 6. Software

FIGURE 7-1 Local area network components

1. Clients

- Devices on the network that request information from servers
- 2. Servers
 - Devices on the network that deliver information or provide services to clients
- **3.** Network interface cards (NIC)
 - Also called network cards and network adapters
 - Operate at layers 1 and 2
 - Commonly built into motherboards
 - Ethernet NICs contain unique MAC address

4. Network Cables

Name	Туре	Maximum Data Rate	Used by
Category 3	UTP	10 Mbps	10BASE-T
Category 5	UTP/STP	100 Mbps	100BASE-T
Category 5e	UTP/STP	1 Gbps	1000BASE-T
Category 6/6a	UTP/STP	10Gbps	10GBASE-T
OM1 (62.5/125 μm)	Fiber	1-10 Gbps*	1000BASE-SX
OM3 (50/125 μm)	Fiber	10-100 Gbps*	10GBASE-SR

* Speed depends on circuit length

- 5. Hubs and switches
 - Link cables from different devices, sometimes more than one type of cabling
 - Act as repeaters, reconstructing and strengthening incoming signals

(a) Small-Office, Home-Office (SOHO) switch with five 10/100/1000 Mbps ports

http://homesiane.cbcn.com/en-us/Switches/ linksps-EZX555W_sic/Wproductid55954575Wcatid543809WVsicesprod.htm

(b) Data center chassis switch with 512 10 Gbps ports Source newsroom circo.com/db/2005/prod_012008.html

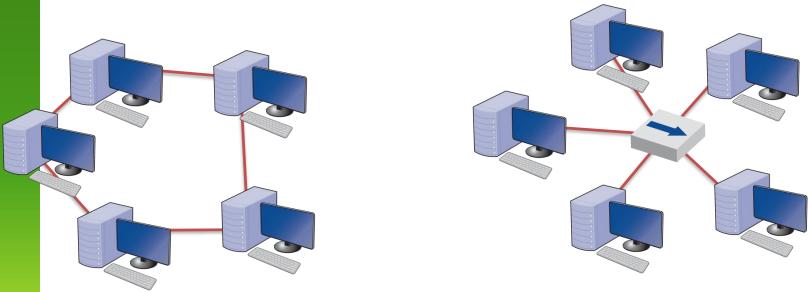
FIGURE 7-2 Lan switches

Source: Courtesy Cisco Systems, Inc. Unauthorized use not permitted

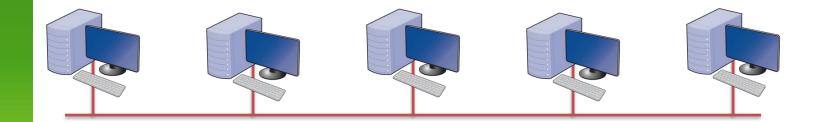
- 5. Access points (APs) use radio waves to connect wireless clients to the wired network (instead of connecting using hubs/switches)
 - Many APs use power over Ethernet (PoE) for electricity
 - No external power is needed
 - Power flows over unused twisted pair wires
 - Also used by some IP cameras and phones

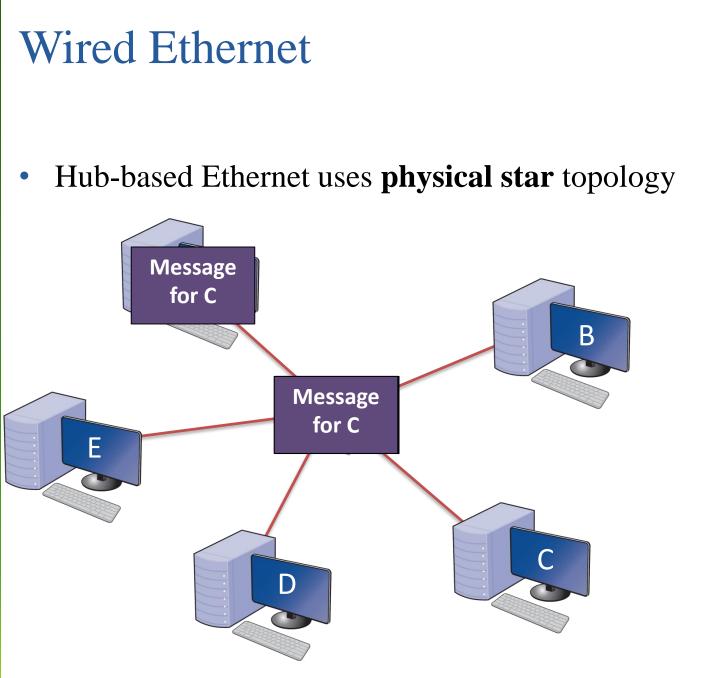
FIGURE 7-3 Wireless access points Source: Courtesy of the author, Alan Dennis

(a) AP for SOHO use

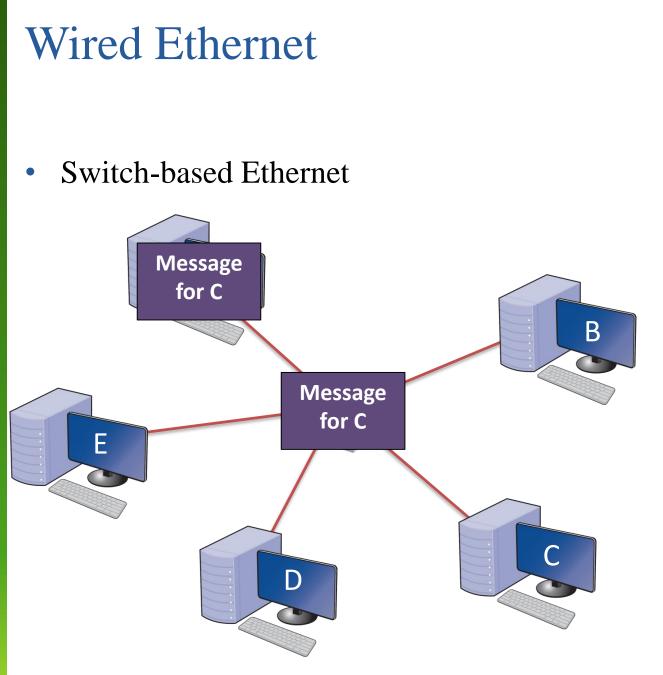

(b) A power-over-Ethernet AP for enterprise use

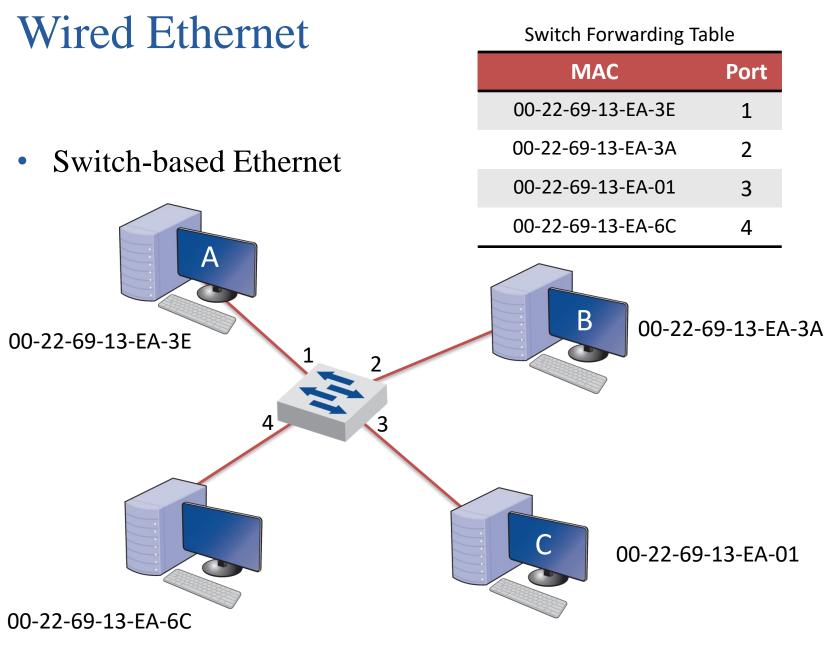
6. Software


- Network Operating System (NOS)
 - Runs on devices and manage networking functions
 - E.g., Novel NetWare, Microsoft Windows Server, Linux
 - E.g., Cisco IOS or JUNOS on routers
- Clients devices typically have network software components included with OS installation
 - E.g., TCP/IP included in Windows, OS X, and Linux
 - Allows clients to view and access available network resources
- Provides **directory services** about LAN resources
- Network profiles specify resources that devices and users can access


- IEEE 802.3 standards
- Used by nearly all LANs today
- Originally developed at Xerox PARC and standardized by a consortium of Digital Equipment Corp., Intel and Xerox (DIX)
- Layer 2 protocol, but physical layer must meet protocol requirements

- Topology: Basic geographic layout of a network
- Types
 - Logical: How the network works conceptually
 - **Physical**: How the network is physically installed


- Hub-based Ethernet
 - Also called shared or traditional Ethernet
 - Logical bus topology means that all devices receive every frame as if they were connected to the same circuit
 - The hub is a multiport repeater


Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

- Switch-based Ethernet
 - Logical star topology means that only the destination receives the frame
 - Switch reads destination address of the frame and only sends it to the interface (physical port) connected to a circuit
 - Uses forwarding tables (also called MAC or CAM tables), which are similar to routing tables
 - Breaks up the collision domain
 - Physical star topology

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

- Switch operation
 - Switches learn which MAC address is associated with an interface (physical port) by reading the source address on a frame
 - When a new frame is received, the switch reads the destination MAC address
 - Looks up destination address in the forwarding table
 - If found, forwards frame to the corresponding interface
 - If not found, broadcasts frame to all devices (like a hub)

- Switching modes
 - Store and forward switching frames retransmitted after entire frame is received and error check is complete
 - Slower, but fewer errors
 - Cut-through switching frames retransmitted as soon as destination address read
 - Low latency, but some capacity wasted
 - Fragment-free switching frames retransmitted once the header (first 64 bytes) is received and has no errors
 - Compromise between store and forward and cutthrough

• Media access control

- Wired Ethernet uses a contention-based technique called carrier sense multiple access with collision detection (CSMA/CD)
 - Carrier Sense (CS):
 - A device "listens" to determine if another computer is transmitting
 - Only transmit when no other computer is transmitting
 - Multiple Access (MA):
 - Many devices have access to transmit on the network medium
 - Collision Detection (CD):
 - Collisions occur when multiple devices transmit simultaneously
 - If a collision is detected, wait a random amount of time and resend
- Relies on collision detection rather than avoidance

- Commonly called Wi-Fi
- A family of standards developed by IEEE formally called 802.11
- Uses radio frequencies to transmit signals through the air (instead of cables)
- Wi-Fi has many benefits
 - Provides network connections where cabling is impossible or undesirable
 - Allows device and user mobility
 - Potentially more economical than wired networks

• Components

- Access points (APs)
 - Antenna type
 - Omnidirectional
 - Directional
 - $AP \neq Router$
 - Association with AP
 - Active vs. passive scanning
- Wireless NICs

- Topology
 - Physical star
 - Logical **bus**
- Media access control
 - Uses CSMA/CA (CSMA with collision avoidance)
 - Two methods
 - Distributed coordination function (DCF)
 - Point coordination function (PCF)
 - Solves hidden node problem
 - Not widely implemented

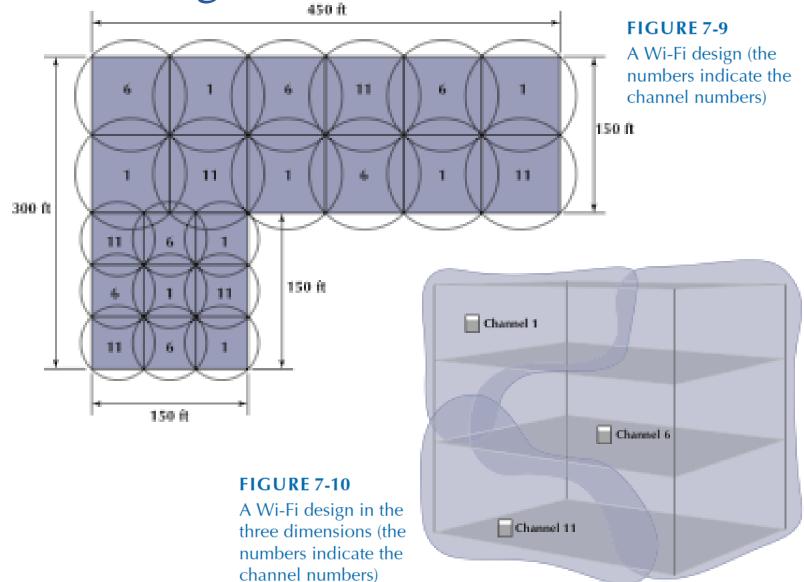
- 802.11 Frame
 - Includes four address fields
 - Two addresses have the same meaning as in wired Ethernet, the others are used communicating with APs and other devices

Control	Address / ID bytes)	Address 2 (6 bytes)	Address 3 (6 bytes)	Sequence Control (2 bytes)	Address 4 (6 bytes)	Data (46-2312 bytes)	FCS (6 bytes)
---------	---------------------------	---------------------------	---------------------------	----------------------------------	---------------------------	-------------------------	------------------

- WiFi devices transmit and receive within **frequency ranges**
 - These frequency ranges are divided into "channels"
- Frequency ranges (in the United States)
 - 2.4 GHz range
 - 2.412-2.462 Ghz
 - 3 non-overlapping channels
 - 5 GHz range
 - 5.180-5.320 and 5.745-5.825 Ghz
 - 12 non-overlapping channels
- Larger frequency range \rightarrow higher potential bandwidth
- Higher frequency \rightarrow greater attenuation (i.e., shorter range)
- Overlapping channels should be minimized

• Types of Wi-Fi:

Туре	Date Published	Max Tx Speed	Frequency (Ghz)	Official Status
802.11a	1999	54 Mbps	5, 3.7	Obsolete (Superseded)
802.11b	1999	11 Mbps	2.4	Obsolete (Superseded)
802.11g	2003	54 Mbps	2.4	Obsolete (Superseded)
802.11n	2009	600 Mbps	2.4/5	Obsolete (Superseded)*
802.11ac	2013	6.77 Gbps	5	Current
802.11ad	2012	~7 Gbps	2.4, 5, 60	Current
802.11ax	Est. 2019	?	2.4, 5	In-Progress


*Still widely used in 2014

- Security
 - Security is particularly important for WLANs because they are easy to discover
 - Security protocols
 - Wired Equivalent Privacy (WEP)
 - Insecure and easy to bypass
 - WPA and WPA2 (802.11i)
 - -WPA2 is currently recommended
 - MAC address filtering
 - May prevent casual users from connecting

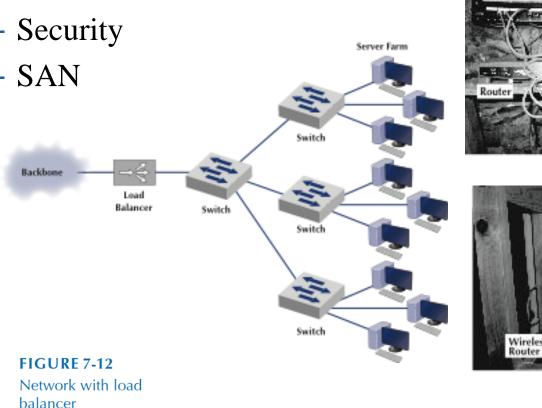
LAN Design

- Current best practice is to use wired LANs for primary network and wireless as an overlay network
- Select fastest stable technology, cost permitting
 - e.g., choose 802.11ac over 802.11n or 1000BASE-T over 100BASE-T
- Physical WLAN design
 - More challenging than LANs because of interference
 - Start with **site survey** to determine:
 - Coverage required
 - Potential sources of interference
 - Locations of wired hubs/switches and power sources
 - Number of APs needed

LAN Design

LAN Design

- LANs may have very different requirements
 - Load balancers
 - Virtualization
 - Security
 - SAN



Source: Photos courtesy of the authors, Alan Dennis and Alexandra Durcikova

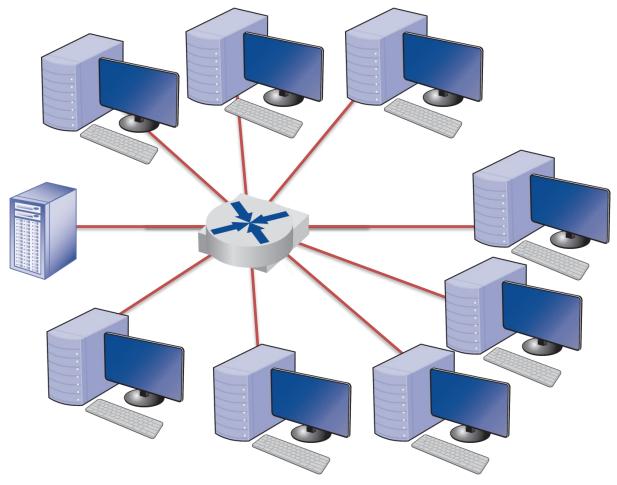
(a) Alan's home network

(b) Alexandra's home network

Patch Panel

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

Cable Modem


Cable Modem

Switch

- How can we improve **throughput**, the total data transmitted in a given period of time?
 - Identify bottlenecks
 - The parts of the network restricting data flow
 - Devices
 - Servers (check CPU and disk performance)
 - Clients
 - Networking devices
 - Circuits
 - Demand

- Devices
 - Upgrade server
 - Software and hardware (CPU, memory, disks)
 - Redundant array of inexpensive disks (RAID)
 - Add a new server
 - Upgrade clients
- Circuits
 - Buy faster circuit (e.g., 100BASE-T to 1000BASE-T)
 - Add circuits
 - Add access points on different channels
 - Segment network

Network Segmentation

- Reducing network demand
 - Move files to client computers
 - Encourage off-peak usage
 - Consider blocking or throttling unnecessary network traffic

Implications for Management

- Enterprise LAN equipment is quickly becoming a commodity
- SOHO users are primarily moving to wireless
 - Speeds have increased
 - Dramatic growth of WiFi-enabled devices
- The Internet of Things will influence LAN design